Children's Hospital Oakland Research Institute HLA Laboratory

<u>Principal Investigator</u> Elizabeth Trachtenberg, M.S., Ph.D., d(ABHI)

Primary Staff dedicated to the NMDP Donor-Recipient Pair Project

Margaret Vinson, B.A, C.L.S, C.H.S. J. Ryan McNulty, B.A.

SSOP HLA-DPA1 High Resolution Typing Procedure

Last Revised February 2004

QIAGEN (Valencia, CA) genomic DNA extraction kits are used to obtain high quality DNA from blood, cells, tissue, and blood spots.

To type the HLA-DPA1 locus, non-biotinylated primer pairs are used to amplify exon 2. HLA-DPA1 PCR products are then denatured and immobilized onto a nylon membrane using vacuum followed by U.V. cross-linking (dot blot format). The dots are then hybridized to a series of (currently) 19 biotinylated SSO probes specific to exon 2 of HLA-DPA1. The membranes are then stringently washed to remove unbound probe, and then developed using a non-radioactive, colorimetric detection system. The developed membranes are photographed for permanent storage and analysis. To determine the genotypes, the membrane pictures are analyzed using a proprietary computer pattern matching program developed in-house. If no definitive genotype can be deduced from the analysis of the general amplification, group-specific amplifications are performed to amplify the alleles separately for re-analysis with the SSO probes.

An immobilized probe typing system for HLA-DPA1 is currently under development in collaboration with Dr. Henry Erlich's laboratory at Roche Molecular Systems (Alameda, CA). In this method, unlabeled oligonucleotide probes are immobilized onto a backed nylon membrane. The PCR product is labeled during the amplification process by the incorporation of biotinylated primers and hybridized to the immobilized probe array. A distinct advantage of the immobilized probe system is that, providing there is no allele ambiguity problem with the sample, only one hybridization reaction will sufficiently determine genotype.

Our HLA-DPA1 typing system is continuously upgraded as new alleles are discovered.